# Negative Nominal Interest Rates: Effect on Bank Profitability

Heather E. Dempsey Jack Welch School of Business Doctoral Business Administration in Finance Program Sacred Heart University 5151 Park Avenue Fairfield CT 06825. 203 456 5557. Dempseyh@mail.sacredheart.edu

January 15, 2017

Abstract

This paper examines the effect of negative interest rates on commercial bank profitability in Denmark, Sweden, Switzerland, and the euro area for the years 2004-2016, observed in quarterly periods. Using a two-way fixed effect model on an unbalanced panel of 29 international banks, this study investigates two measures of bank performance: return on assets (ROA) and return on equity (ROE), as regressands, and finds an adverse effect on both measures with ROE having the greater impact. While this study finds a positive relationship between the nominal interest rate on central banks' deposit facilities and commercial bank profitability, evidence suggests that negative interest rates have not had a significant effect.

JEL classification: C01, C12, C33, C87, E43, E58, F33, G21, O57, Y1

Keywords: International banks, negative interest rates, monetary policy, bank profitability, reserves, panel data

#### 1. Introduction

The central bank of Japan reduced its deposit facility interest rate to -0.10% on February 16<sup>th</sup>, 2016. Japan's stated reasons are: to counter "persistent deflationary pressure and economic stagnation" (Ilgmann and Menner, 2011, p.385). In Hungary, the Magyar Nemzeti Bank's (MNB) deposit facility rate is -0.05% and has been in negative territory since March 23<sup>rd</sup>, 2014. The MNB implemented negative interest rate policy to "mitigate spillover effects from unconventional monetary policy measures", with the intention of "[promoting] new lending and [reducing] vulnerabilities" (Jobst and Lin, 2016, p.5). In Norway, the Norges Bank's (NB) current rate is -0.50%. This deposit facility interest rate first went negative on September 24<sup>th</sup>, 2015 to encourage lending between banks and discourage deposits with the NB. Rates in Denmark fell below zero from July 2012 through April 2014 and again in September 2014, remaining negative all the way to the present. Denmark's deposit facility rate, today at -0.65%, was deemed necessary by the Danmarks Nationalbank (DN) to discourage capital inflows and address currency appreciation. Sweden's central bank Sveriges Riksbank (SR) has introduced negative interest rates February 12<sup>th</sup>, 2015 in effort to counter deflation and create higher demand. The SR current deposit facility rate is by far the most negative of all central banks at -1.25% (Turk, 2016). Similar to Denmark, the Swiss National Bank (SNB) has their deposit facility rate at -0.75%. The SNB introduced negative rates on January 15<sup>th</sup>, 2016 with the intention to decrease capital inflows and address appreciation pressure on the Swiss franc (McAndrews, 2015). In the euro area, the European Central Bank's (ECB) policy objective was in an effort to increase inflation to just below 2% as well as maintain price stability (ECB, 2016). Negative interest rates, first implemented June 11<sup>th</sup>, 2014 with the current rate at -0.40%, were adopted to provide the stimulus needed to achieve this goal (Arteta, Kose, Stocker, & Taskin, 2016). This study focuses on Denmark, Sweden, Switzerland, and the euro area where negative rates have been effective for over a year. Please see Table I for a summary of central banks implementing negative rates on their deposit facility.

The negative interest rate policy (NIRP) adopted by these central banks is intended to heighten inflation, counter currency appreciation, maintain price stability and create an incentive for banks to lend (ECB, 2016). Central banks in Japan, Hungary, Norway, Switzerland, Sweden, Denmark, and the euro area have all departed from paying interest on balances held at the central bank to actively charging commercial banks for deposits above the required reserve. This paper examines the relationship between those negative interest rates and commercial bank profitability.

The goal of this study is to quantify the impact of nominal interest rates on bank performance measures as short term rates fall below zero. I analyze twenty-nine large and small international banks with the periodicity of data in quarter years. I find there is an adverse effect on profitability measures  $(ROA)^1$  and  $(ROE)^2$  with ROE being the most impacted. The magnitude of estimated effect is reported along with the other explanatory variables in Table VII.

<sup>1</sup> Return on assets =  $\frac{Net \ income}{Total \ assets}$ 

<sup>2</sup> Return on equity =  $\frac{Net \ income}{Total \ equity \ capital}$ 

The methodological approach in this study estimates the model using nonlinear two-way fixed effects transformation, with time demeaned data on both regressands. I use robust data sets from years 2004-2016, spanning 48 periods of quarterly observations. I chose 12 years to prevent the anomalies associated with the Global Financial Crisis of 2007-2008 from skewing the results found here. I control for macroeconomic factors growth, population and domestic credit.

#### 1.1 Brief literature review

The research applied in this analysis empirically shows that there is a negative effect on profitability when interest rates decline past zero. C.W. (2015) determines policy rates below the zero bound have an adverse effect on commercial banking profitability. This study supports his findings in that negative interest rates adversely impact both ROA and ROE. Borio, Gambacorta and Hofman (2015), find higher interest rates lead to higher profitability overall. They discovered a concave relationship exists between ROA and interest rates as well as the slope of the yield curve and interest rate structure. It is noteworthy that their data set was limited to positive interest rates. Concavity is not an issue in a negative rate environment. Rognlie (2015) believes the effect of negative rates will be of mild consequence. His opinion supports the conclusion of this study. Jobst and Lin (2016) describe how banks have reacted to the lowered deposit rate by replacing excess reserves with riskier assets. A move, both authors conclude, will influence quantitative easing measures through the portfolio rebalancing channel. Jobst and Lin's findings are supported in the present study.

Several researchers have contrary inferences than those found in this study. Scheiber, Silgoner and Stern (2016) warn that bank profitability will decline at an increasing rate if interest rates remain negative for much longer. Concluding bank profitability has been stable and that adverse effects from negative interest rates have yet to surface. I reject the null hypothesis that there has been no effect in contrast with their study. Arteta, Kose, Stocker and Taskin (2016) find that with the limited data available since rates have gone negative, that there are inconclusive results as to the impact on bank profitability. I will show empirical evidence to the contrary. Please see Table VII, Appendix (A.3) and (A.4) for conclusive results.

#### 2. Theoretical model

Model (a): 
$$ROA_{i,t} = \alpha_{it} + \beta_1 DEP_{i,t} + \beta_2 SYLD_{i,t} + \beta_3 \ln(SIZE_{i,t}) + \beta_4 GRW_{i,t} + \beta_5 CRD_{i,t} + \beta_6 \ln(POP_{i,t}) + u_{i,t}$$

Model (b): 
$$ROE_{i,t} = \alpha_{it} + \beta_1 DEP_{i,t} + \beta_2 SYLD_{i,t} + \beta_3 \ln(SIZE_{it}) + \beta_4 GRW_{i,t} + \beta_5 CRD_{i,t} + \beta_6 \ln(POP_{i,t}) + u_{i,t}$$

I have run two separate models in order to verify findings and corroborate any trends. Model (a) is run using return on assets (ROA) per individual bank, as the dependent variable, and Model (b) uses return on equity (ROE) as the dependent variable. ROA and ROE are recognized measures of bank performance and were chosen for this purpose. Of primary interest is the deposit facility rate (DEP) which has been negative for a year or more and is projected to directly

affect profitability. The slope of the yield curve (SYLD) is the spread between long term maturities and short term maturities' yield. This spread is driving bank profitability and derived here from the difference between the areas' 10-year government bond yield and the three-month London inter-bank lending rate (LIBOR). Size (SIZE) is measured by total assets for each bank and converted into US dollars using the exchange rate on the balance sheet date for each observation. Size influences profitability by the proportional nature of the relationship between excess reserves deposited and resulting quantity subject to negative rates. The natural logarithm of size ln (SIZE) is used in model to normalize the disparity in these data points. Growth (GRW) as a percentage of the gross domestic product (GDP), will indicate the likelihood of spending by households making deposits and those securing loans, both potential sources of revenue for commercial banks. Growth affects profitability by countering the consequences of negative rates. Domestic credit (CRD) measures the amount of credit extended to the local economies by the finance sector as a percentage of real GDP. This value will indicate the volume of lending and its impact on bank portfolios. Population (POP) is a measure of the likelihood that: (1) interest bearing accounts will be issued; and (2) loans will be secured by the public. The larger the population the higher the probability of such events. Both loans and interest bearing accounts are critical sources of profitability for banks and help to mitigate the effect of negative interest rates. The logarithm of population ln (POP) is chosen to transform these data to similar scale of models' other coefficients while preserving the integrity of these data. Please see Table III for a review of all variables in both models, including data sources.

# 2.1 Model Construction

Indexing individual banks with *i* and quarter years with *t*, over an unbalanced panel of twenty-nine banks. Financial institutions are sampled across four regions: Switzerland, Sweden, Denmark and the euro area. I regress predictor variables DEP, SYLD, ln(SIZE), GRW, CRD and ln(POP) on dependent variables ROA and ROE. I use a nonlinear functional form with two-way fixed effect model transformation allowing the intercept to differ both with time and entity. In both models  $\alpha_{it} = \beta_0 + BNK$ ; the bank (BNK) variable includes bank specific and time fixed factors. Bank fixed includes elements such as strategy, culture, inherent advantage and human capital which will vary across banks but not over time. Whereas time fixed effects such as location and central bank governance will vary across time but not across banks. Sources of endogeneity, such as simultaneity and measurement error, are not present because of the usage of time-fixed and bank-fixed variables. The natural logarithm of population, ln(POP), is included in both models to transform the large values into logarithmic scale to better relate to the size neighboring variables. Conversely, the natural logarithm is taken of SIZE to normalize the disparities in these data sample. The unobserved term *u* contains those factors that cannot be quantified but do have an effect on profitability such as ability and motivation of bank personnel.

Steps taken to arrive at final model.

- 1. Using stepwise regression to check whether the model specification is correct.
- 2. Correlation analysis showed a high correlation 0.85 or more between FDI and POP. Please see appendix (A.1) for the resulting matrices.

The slope coefficient is expected to be positive, indicating a relationship where bank profitability decreases as nominal interest rates decline even beyond the zero bound.

Theoretically, increased expense will decrease profitability. Please view Table IV for the expected sign of coefficients.

# 2.2 Testable hypothesis

 $H_0$ : Negative nominal interest rates have no effect on bank profitability.

 $H_A$ : Not  $H_0$ 

The null hypothesis purports interest rates below zero will not depress bank profitability.

The alternative hypothesis states that the null hypothesis is false.

Regressing complete model on both ROA and ROE I find the p-values on the slope coefficient DEP, to be 0.0078 and 0.0521 respectively. I reject the null based on both values being < 0.10.

### 3. Empirical section

## 3.1 Data

The banks in this sample were chosen under the assumption that larger banks would have greater excess reserves and be most sensitive to negative interest rates. Small banks are included for a representative sample. Size is determined by total assets converted to USD. Please see Table II for a complete list of banks examined in this study.

I have adjusted the sample by omitting incomplete periods of observation. Three quarters in 2016 were excluded due to the unavailability of growth, population and domestic credit quarterly data for that year. Several banks failed to report the ROA for 2016's third quarter. Thus, third quarter observations for these banks have been excluded.

The slope of the yield curve was derived by calculating the difference in the 10-year government bond yield and the three-month LIBOR. The Intercontinental Exchange (ICE), formerly British Bankers Association (BBA), discontinued LIBOR fixing after 2013 in several currencies including the Danish krone and Swedish krona these observations were also omitted as the slope of the yield curve could not calculated.

There are 1,034 complete observations for the model with regressand ROA and 1,041 for the model regressed against ROE. I control for macroeconomic variance by including indicators such as growth, domestic credit issued by financial sector and population. Please see Table III for comprehensive variable descriptions including their source.

### 3.2 Results

The econometric model defined in this paper demonstrates that central bank deposit facility interest rates have had a positive relationship with both ROE and ROA. Negative rates adversely affect both profitability measures: ROA and ROE. As interest rates decline into negative territory, commercial bank profitability also decreases.

I test for multicollinearity using correlation analysis. Variables with value 0.85 indicate high collinearity with other explanatory variables. I find foreign direct investment (FDI) and population squared (POP^2) were highly correlated with other regressors and were subsequently dropped from original model. Please view appendix (A.1) for resulting correlation matrices. In order to test for the correct model specification, I use a stepwise estimation method. Each variable in present model I verify is necessary for multiple regression. Additionally, I use a stepwise method to test for whether I have the wrong functional form or if interaction terms are needed

I apply the White Period covariance method to solve for autocorrelation and remedy heteroskedasticity. Clustered standard errors estimate the variance when variables are identified across entities but are potentially auto correlated within an entity. I ensure that the error term is uncorrelated with explanatory variables by correlation analysis.

Estimated equations with standard errors in parenthesis:

(a): 
$$\widehat{ROA_{i,t}} = 0.0016DEP - 0.0013SYLD - 0.0028 \ln(SIZE) - 0.0002GRW - 0.0001CRD$$
  
(0.0006) (0.0004) (0.0014) (0.0004) (0.00005)  
 $-0.0627 \ln(POP)$   
(0.0292)

(b): 
$$\widehat{ROE}_{i,t} = 0.0302DEP - 0.0325SYLD + 0.0403 \ln(SIZE) - 0.0086GRW - 0.0005CRD$$
  
(0.0155) (0.0114) (0.0847) (0.0146) (0.0017)  
 $-0.2306\ln(POP)$   
(0.868)

The Durbin-Watson statistic is low, 1.55 for ROA and 1.16 for ROE, indicating serial correlation. However, some correlation is to be expected from panel data where each bank is observed over 48 periods, and in this case it is acceptable. Scatterplots of residuals for both ROA and ROE displayed homoscedasticity validating the models' assumptions. See appendix (A.10) and (A.11).

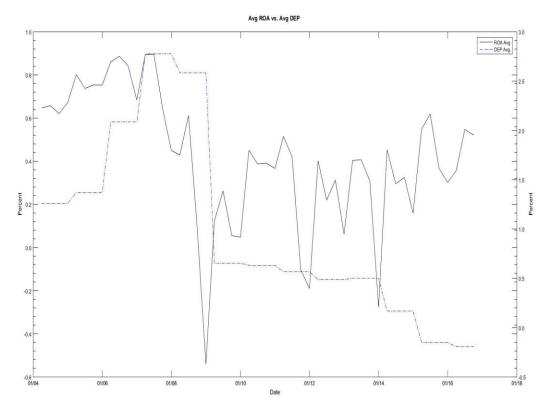
Consequently, commercial banks under the implementation of negative interest rates have had an increase in expense on deposits at the central bank. Banks with reserves in excess of the required have responded by participating in interbank lending in effort to circumvent the deposit facility rate. Excess reserves deposited since the creation of NIRP have been subject to negative rates and consequently, for commercial banks, a negative return. As commercial bank expenses on deposits rise, the interest margin is squeezed, effectively reducing profitability. It follows that profits decrease as interest rates move into negative territory. This decrease in profits supports the decision to reject the null hypothesis.

#### 4. Conclusion

Negative nominal interest rates have an adverse effect on bank profitability. However, these adverse effects have been mitigated by bank lending volumes and asset valuations, which have increased overall portfolio balances. Additionally, banks are storing large sums of cash in vaults to avoid the expense of depositing excess reserves at the central bank. According to Bloomberg's Christian Zimmerman (2014) some commercial banks are charging, for the first time ever, corporate clients' interest on their deposit accounts. Commission income and net fees have also increased and interest paid on retail deposits have been lowered. These measures all reduce the expense of central bank short term policy and positively influence both ROA and ROE while dampening the effect of negative rates. The idea behind negative interest rate policy (NIRP) was for an incentive to be in place to encourage banks not to sit on excess liquidity but rather to lend out and take greater investment risks. NIRP has not, as of yet, had the intended effect of creating money in the real economy. These negative interest rates were designed to create upward pressure on inflation and growth while depressing unemployment. Unfortunately, this goal has yet to materialize. World bank data on macroeconomic factors for 2016 have yet to be released, limiting this model up to and including the fourth quarter 2015.

#### References

- Afonso, A., & Martins, M. M. (2010). Level, slope, curvature of the sovereign yield curve, and fiscal behaviour. European Central Bank. Working Paper Series No 1276.
- Alessandri, P., & Nelson, B. (2012). Simple banking: profitability and the yield curve. Working Paper No. 452. London: Bank of England.
- Arteta, C., Kose, A., Stocker, M., & Taskin, T. (2016). Negative interest rate policies: Sources and implications. *Centre for Applied Macroeconomic Analysis*, 7-15.
- Bech, M., & Malkhozov, A. (2016). How have banks implemented negative policy rates? BIS Quarterly Review.
- Bernhardsen, T., & Lund, K. (2015). Negative interest rates: Central bank reserves and liquidity management. Oslo: Norges Bank.
- Borio, C., Gambacorta, L., & Hofmann, B. (2015). The influence of monetary policy on bank profitability. BIS Working Papers.
- Buiter, W. H., & Panigirtzoglou, N. (2003). Overcoming the zero bound on nominal interest rates with negative interest on currency: Gesell's solution. *The Economic Journal*, 723-745.
- C.W. (2015, February 18). Why negative interest rates have arrived—and why they won't save the global economy. Retrieved from The Economist explains: http://www.economist.com/blogs/economist-explains/2015/02/economist-explains-15
- Cœuré, B. (2016). Assessing the implications of negative interest rates. *Yale Financial Crisis Forum, Yale School of Management.* New Haven: European Central Bank.


- Comfort, N. (2016, June 1). European banks feel the pinch from Draghi's negative rates. Retrieved from Bloomberg: https://www.bloomberg.com/news/articles/2016-06-01/european-banks-feel-the-pinch-from-draghi-s-negative-rates
- Draper, N. R., & Smith, H. (1981). Applied Regression Analysis (2nd ed.). New York: Wiley.
- ECB. (2016, December 30). *Monetary policy*. Retrieved from European Central Bank: https://www.ecb.europa.eu/mopo/html/index.en.html
- Genay, H., & Podjasek, R. (2014). What is the impact of a low interest rate environment on bank profitability? Chicago: Federal Reserve Bank of Chicago.
- Global credit research. (2016, April 18). *Moody's: Swedish and Swiss Banks' profitability resilient to low interest rates, but downside risks intensify*. Retrieved from Moody's investor service: https://www.moodys.com/research/Moodys-Swedish-and-Swiss-Banks-profitability-resilient-tolow-interest--PR\_347423
- Goodfriend, M. (2016). The Case for Unencumbering Interest Rate Policy at the Zero Bound. *Designing Resilient Monetary Policy Frameworks for the Future* (pp. 26-27). Jackson Hole: Federal Reserve Bank of Kansas.
- Gray, S. (2015). Negative nominal policy interest rates. Washington, DC.: International Monetary Fund.
- Heider, F., Saidi, F., & Schepens, G. (2016). Life below zero: bank lending under negative policy. Stockholm: European Central Bank.
- Ilgmann, C., & Menner, M. (2011). Negative nominal interest rates: history and current proposals. International Economics and Economic Policy, 383-405.
- Jobst, A., & Lin, H. (2016). Negative interest rate policy (NIRP): implications for monetary transmission and bank profitability in the euro area. Munster: International Monetary Fund.
- Kane, C. (2016, March 14). ECB Interest Rates: Here's Why Negative Interest Rates Are More Dangerous Than You Think. Retrieved from Fortune: http://fortune.com/2016/03/14/negative-interestrates-european-central-bank/
- McAndrews, J. (2015, May 8). Negative Nominal Central Bank Policy Rates: Where Is the Lower Bound? Retrieved from Federal Reserve Bank of New York: https://www.newyorkfed.org/newsevents/speeches/2015/mca150508.html
- Palley, T. I. (2016). Why negative interest rate policy (NIRP) is ineffective an dangerous. *Real-world* economics review, 5-15.
- Regehr, K., & Sengupta, R. (2014). Has the relationship between bank size and profitability changed? Kansas City: Federal Reserve Bank of Kansas City.
- Rognlie, M. (2015). What lower bound? Monetary policy with negative interest rates. Boston: MIT Department of Economics.

Saunders, A., & Cornett, M. M. (2014). Financial markets and institutions (6 ed.). Boston: McGraw Hill.

- Scheiber, T., Silgoner, M. A., & Stern, C. (2016). The development of bank profitability in Denmark,
   Sweden and Switzerland during a period of ultra-low and negative interest rates.
   Oesterreichische: Focus on European Economic Integration.
- Swamy, V. (2015). Modelling bank asset quality and profitability: an empirical assessment. *Economics-ejournal*, 1,8-11.
- Turk, R. A. (2016). Negative interest rates: how big a challenge for large Danish and Swedish banks? International Monetary Fund.
- Woodford, M. (2003). Interest & Prices. Princeton: Princeton University Press.
- Zimmermann, C. (2014, August 4). *The FRED Blog: Negative Interest Rates*. Retrieved from Economic Research Federal Reserve Bank of St. Louis: https://fredblog.stlouisfed.org/2014/08/negative-interest-rates/

#### Tables and graphs

#### Graph 1. Average return on assets vs. average deposit facility interest rate over time



Graph 2. Average return on equity vs. average deposit facility interest rate over time

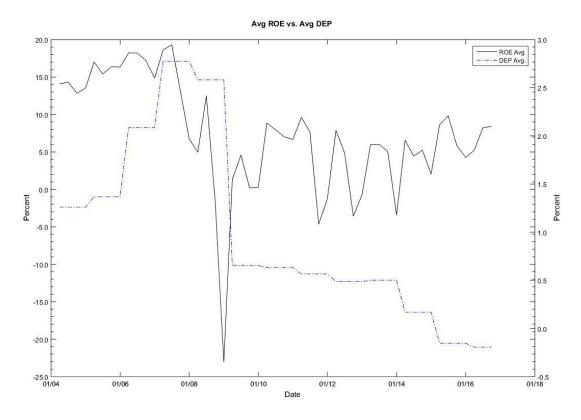



 Table I

 Summary of Central Banks with Negative Deposit Facility Interest Rates

| Central Bank and      | Date of effect                | Motivation for monetary       | The Current  | 10-Year                         |
|-----------------------|-------------------------------|-------------------------------|--------------|---------------------------------|
| Governing Area        |                               | policy                        | Rate on      | Government                      |
|                       |                               |                               | excess       | bond current                    |
|                       |                               |                               | reserve      | yield                           |
|                       |                               |                               | deposit in   |                                 |
|                       |                               |                               | basis points |                                 |
| European Central Bank | June 11 <sup>th</sup> , 2014  | Secure inflation expectations | -40          | 3.21                            |
| (ECB)                 |                               | and achieve price stability   |              | As of July 1 <sup>st</sup> ,    |
| euro Area             |                               |                               |              | 2016                            |
| Sveriges Riksbank     | February 12 <sup>th</sup> ,   | Secure inflation expectations | -125         | 0.66                            |
| (SR)                  | 2015                          | and achieve price stability   |              | As of January 1 <sup>st</sup> , |
| Sweden                |                               |                               |              | 2015                            |
| Danmarks Nationalbank | July 2012-April               | Counter exchange rate         | -65          | 1.03                            |
| (DN)                  | 2014, September               | pressures                     |              | As of January 1st,              |
| Denmark               | 2014                          | -                             |              | 2015                            |
| Swiss National Bank   | January 15 <sup>th</sup> ,    | Lower appreciation and        | -75          | -0.02                           |
| (SNB)                 | 2015                          | deflationary pressures (Jobst |              | As of January 1st,              |
| Switzerland           |                               | & Lin, 2016)                  |              | 2015                            |
| Magyar Nemzeti Bank   | March 23 <sup>rd</sup> , 2014 | Counter exchange rate         | -5           | 4.80                            |
| (MNB)                 |                               | pressures and achieve price   |              | As of January 1st,              |
| Hungary               |                               | stability                     |              | 2014                            |

| Bank of Japan | February 16 <sup>th</sup> ,  | Secure inflation expectations | -10 | 0.504                           |
|---------------|------------------------------|-------------------------------|-----|---------------------------------|
| (BoJ)         | 2016                         | and achieve price stability   |     | As of                           |
| Japan         |                              |                               |     | July 1 <sup>st</sup> , 2014     |
| Norges Bank   | September 24 <sup>th</sup> , | Price stability measures      | -50 | 1.46                            |
| (NB)          | 2015                         |                               |     | As of January 1 <sup>st</sup> , |
| Norway        |                              |                               |     | 2015                            |

|                                                  | ks and Total Asse         |             | 1             | •       |
|--------------------------------------------------|---------------------------|-------------|---------------|---------|
| Banks Analyzed (sorted by size)                  | Current Total             | Country     | Balance Sheet | Central |
|                                                  | Assets in                 | of Location | Date          | Bank    |
| Destate Destate CDD DDV                          | Billions USD <sup>3</sup> | Comment     | 20.00.2016    | ECD     |
| Deutsche Bank AG DB DBK                          | 1,897.35                  | Germany     | 30.09.2016    | ECB     |
| Credit Agricole S A ENXTPA ACA                   | 1,763.39                  | France      | 30.09.2016    | ECB     |
| Societe Generale Group ENXTPA GLE                | 1,578.25                  | France      | 30.09.2016    | ECB     |
| Banco Santander S A BME SAN                      | 1,493.59                  | Spain       | 30.09.2016    | ECB     |
| UniCredit S p A BIT UCG                          | 982.434                   | Italy       | 30.09.2016    | ECB     |
| ING Groep N V ENXTAM INGA                        | 977.958                   | Netherlands | 30.09.2016    | ECB     |
| UBS Group AG SWX UBSG                            | 962.948                   | Switzerland | 30.09.2016    | SNB     |
| Credit Suisse Group AG SWX CSGN                  | 830.641                   | Switzerland | 30.09.2016    | SNB     |
| Banco Bilbao Vizcaya Argentaria, S.A. (BME:BBVA) | 814.038                   | Spain       | 30.09.2016    | ECB     |
| Intesa Sanpaolo S p A BIT ISP                    | 802.546                   | Italy       | 30.09.2016    | ECB     |
| Coöperatieve Rabobank U A                        | 762.557                   | Netherlands | 30.06.2016    | ECB     |
| Nordea Bank AB publ OM NDA SEK                   | 738.28                    | Sweden      | 30.09.2016    | RB      |
| Commerzbank AG DB CBK                            | 576.797                   | Germany     | 30.09.2016    | ECB     |
| Danske Bank A S CPSE DANSKE                      | 531.525                   | Denmark     | 30.09.2016    | DN      |
| Svenska Handelsbanken AB publ OM SHB A           | 339.791                   | Sweden      | 30.09.2016    | RB      |
| Skandinaviska Enskilda Banken AB publ OM SEB A   | 333.019                   | Sweden      | 30.09.2016    | RB      |
| KBC Group NV ENXTBR KBC                          | 298.839                   | Belgium     | 30.09.2016    | ECB     |
| Swedbank AB publ OM SWED A                       | 279.612                   | Sweden      | 30.09.2016    | RB      |
| Dexia SA ENXTBR DEXB                             | 261.985                   | Belgium     | 30.06.2016    | ECB     |
| Bayerische Landesbank                            | 252.761                   | Germany     | 30.09.2016    | ECB     |
| Erste Group Bank AG WBAG EBS                     | 232.329                   | Austria     | 30.09.2016    | ECB     |
| Banco de Sabadell, S.A. (BME:SAB)                | 231.241                   | Spain       | 30.09.2016    | ECB     |
| Raiffeisen Schweiz Genossenschaft                | 218.799                   | Switzerland | 30.06.2016    | SNB     |
| Zürcher Kantonalbank                             | 155.345                   | Switzerland | 30.06.2016    | SNB     |
| Banque Cantonale Vaudoise SWX BCVN               | 46.074                    | Switzerland | 30.06.2016    | SNB     |
| Basler Kantonalbank SWX BSKP                     | 39.822                    | Switzerland | 30.06.2016    | SNB     |
| Nykredit Bank A S                                | 28.976                    | Denmark     | 30.09.2016    | DN      |
| Sydbank A S CPSE SYDB                            | 21.902                    | Denmark     | 30.09.2016    | DN      |
| Spar Nord Bank A S CPSE SPNO                     | 11.826                    | Denmark     | 30.09.2016    | DN      |

 Table II

 Commercial Banks and Total Assets USD

\_\_\_\_\_

<sup>&</sup>lt;sup>3</sup> Exchange rate on balance sheet date.

|                          | λŢ            | Dependent and Independent  | *                                              | II ' C             |
|--------------------------|---------------|----------------------------|------------------------------------------------|--------------------|
| Dependent                | Name          | Description                | Source                                         | Unit of            |
| Variables                | D.            |                            |                                                | measure            |
| ROA                      | Return on     | Measure of profitability   | S&P Capital IQ & Proprietary Data              | Ratio              |
| DOE                      | Assets        |                            | <u>CODCarital IO O Dransistana</u> Data        | Dette              |
| ROE                      | Return on     | Alternative measure of     | S&P Capital IQ & Proprietary Data              | Ratio              |
| <b>T</b> 1 1 .           | equity        | profitability              | <b>G</b> 4                                     |                    |
| Independent<br>Variables | Name          | Description                | Source <sup>4</sup>                            | Unit of<br>measure |
| DEP                      | Deposit       | Interest rate on excess    | European Central Bank,                         | Rate               |
|                          | facility      | reserves held at central   | http://www.ecb.europa.eu/stats/monetary/rate   |                    |
|                          | interest rate | bank                       | s/html/index.en.html                           |                    |
|                          |               |                            | Denmark National Bank                          |                    |
|                          |               |                            | http://nationalbanken.statbank.dk/nbf/97926    |                    |
|                          |               |                            | Sveriges Riksbank                              |                    |
|                          |               |                            | http://www.riksbank.se/en/Interest-and-        |                    |
|                          |               |                            | exchange-rates/search-interest-rates-          |                    |
|                          |               |                            | exchange-rates/                                |                    |
|                          |               |                            | Swiss National Bank                            |                    |
|                          |               |                            | https://data.snb.ch/en/topics/ziredev#!/cube/z |                    |
|                          |               |                            | imoma                                          |                    |
| SYLD                     | Slope of the  | Difference between 10-     | European Central Bank                          | Rate               |
|                          | yield curve   | year Government bond       | http://sdw.ecb.europa.eu                       |                    |
|                          |               | rate and 3-month Libor     | Denmark National Bank                          |                    |
|                          |               | rate                       | http://nationalbanken.statbank.dk/nbf/97926    |                    |
|                          |               |                            | Sveriges Riksbank                              |                    |
|                          |               |                            | http://www.riksbank.se/                        |                    |
|                          |               |                            | Swiss National Bank                            |                    |
|                          |               |                            | https://data.snb.ch/en                         |                    |
| Ln (SIZE)                | Log of total  | The natural logarithm of   | S&P Capital IQ & Proprietary Data              | Logarithmic        |
|                          | assets        | banks' total assets        |                                                | scale              |
|                          |               | converted to USD           |                                                |                    |
| GRW                      | Growth rate   | Indicates economic         | The World Bank                                 | Rate               |
|                          | a percentage  | growth, measured as a      | http://databank.worldbank.org/data/reports.as  |                    |
|                          | of real GDP   | percentage of real GDP     | px?source=world-development-                   |                    |
|                          |               |                            | indicators&Type=TABLE&preview=on               |                    |
| CRD                      | Domestic      | Domestic credit issued by  | The World Bank                                 | Percentage         |
|                          | credit        | the financial sector (% of | http://databank.worldbank.org/data/reports.as  | %                  |
|                          |               | GDP)                       | px?source=world-development-indicators         |                    |
| Ln (POP)                 | Log of        | The natural logarithm of   | The World Bank                                 | Logarithmic        |
|                          | population    | the population in          | http://databank.worldbank.org/data/reports.as  | scale              |
|                          |               | geographical area          | px?source=world-development-indicators         |                    |

Table III Dependent and Independent Variable Description

<sup>&</sup>lt;sup>4</sup> Link validity date 12/31/2016

| Variable Name             | Expected Sign of | Reasoning                                                           |
|---------------------------|------------------|---------------------------------------------------------------------|
|                           | Regressor (-/+)  |                                                                     |
| Deposit facility interest | +                | Profitability is expected to decrease as interest rates on deposit  |
| rate (DEP)                |                  | decline                                                             |
| Slope of the yield curve  | +                | An upward sloping curve will drive bank profitability; the interest |
| (SYLD)                    |                  | margin spread increases performance measures                        |
| Logarithm of size         | -                | Larger banks are expected to have large amounts of excess reserves  |
| ln(SIZE)                  |                  | and subject to greater expense.                                     |
| Growth                    | +                | Growth will attract depositors and borrowers, increasing profits    |
| (GRW)                     |                  |                                                                     |
| Domestic credit           | +                | Domestic lending volumes will increase profitability                |
| (CRD)                     |                  |                                                                     |
| Logarithm of population   | +                | Higher areas of population have increased probability a portion of  |
| ln(POP)                   |                  | the local economy will borrow and hold savings accounts             |
|                           |                  | increasing bank performance                                         |

Table IV Expected Signs of Independent Variables

| Summary Statistics                |          |              |          |           |          |          |  |  |  |  |
|-----------------------------------|----------|--------------|----------|-----------|----------|----------|--|--|--|--|
| Variable Name                     | Variable | Observations | Mean     | Std. Dev. | Max      | Min      |  |  |  |  |
| Return on assets                  | ROA      | 1375         | 0.0042   | 0.0065    | 0.0326   | -0.0661  |  |  |  |  |
| Return on equity                  | ROE      | 1401         | 0.0752   | 0.1668    | 0.6132   | -2.5844  |  |  |  |  |
| Deposit facility<br>interest rate | DEP      | 1427         | 0.861    | 1.209     | 4.25     | -1.25    |  |  |  |  |
| Slope of the yield curve          | SYLD     | 1166         | 1.4337   | 1.1954    | 4.1977   | -1.8176  |  |  |  |  |
| Logarithm of size                 | ln(SIZE) | 1445         | 12.7114  | 1.4546    | 15.0963  | 8.6103   |  |  |  |  |
| Growth                            | GRW      | 1392         | 1.3579   | 2.4794    | 5.9889   | -5.1847  |  |  |  |  |
| Domestic credit                   | CRD      | 1392         | 163.2541 | 28.9543   | 239.6422 | 108.6077 |  |  |  |  |
| Logarithm of population           | ln(POP)  | 1392         | 17.6616  | 1.9064    | 19.6427  | 15.5027  |  |  |  |  |

Table V Summary Statistic

# Table VI Analysis of Moments

| Variable | Mean     | Standard Deviation | Skewness | Kurtosis |
|----------|----------|--------------------|----------|----------|
| ROA      | 0.0042   | 0.0065             | -3.4223  | 28.1725  |
| ROE      | 0.0751   | 0.1668             | -6.1516  | 66.0602  |
| DEP      | 0.8610   | 1.209              | 0.8217   | -0.0639  |
| SYLD     | 1.4337   | 1.1954             | -0.1108  | -0.8298  |
| LSIZE    | 12.7114  | 1.4546             | -0.8153  | -0.2649  |
| GRW      | 1.3579   | 2.4794             | -0.9501  | 1.0792   |
| CRD      | 163.2541 | 28.9543            | 0.7891   | 0.8638   |
| LPOP     | 17.6616  | 1.9064             | 0.0521   | -1.9768  |

|                                                                                                                                                             |                               |                       |                      | ]                          |                      |                                                                   |                         |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|----------------------|----------------------------|----------------------|-------------------------------------------------------------------|-------------------------|----------------------|
|                                                                                                                                                             |                               |                       |                      | Table VII     Main Results | e VII<br>Results     |                                                                   |                         |                      |
|                                                                                                                                                             | N                             | Model I               | М                    | Model II                   | Ν                    | Model III                                                         | Mo                      | Model IV             |
| Fundanation wariables                                                                                                                                       |                               |                       |                      | Depende                    | Dependent variables  |                                                                   |                         |                      |
| to the second                                             | ROA                           | ROE                   | ROA                  | ROE                        | ROA                  | ROE                                                               | ROA                     | ROE                  |
| Deposit facility interest 10*                                                                                                                               | 10*                           | 311**                 | 16***                | 302**                      | 15**                 | 299**                                                             | 17***                   | 302*                 |
| rate x 10 <sup>-4</sup>                                                                                                                                     | (1.76)                        | (2.25)                | (2.72)               | (2.37)                     | (2.42)               | (2.19)                                                            | (2.67)                  | (1.94)               |
| Slope of the Yield                                                                                                                                          |                               |                       | - <mark>%</mark>     | -330**                     | -9.67**              | -322**                                                            | -12.81***               | -325***              |
| Curve x 10 <sup>-4</sup>                                                                                                                                    |                               |                       | (-1.68)              | (-2.11)                    | (-2.3)               | (-2.43)                                                           | (-3.04)                 | (-2.86)              |
| ln(Size) x 10 <sup>-4</sup>                                                                                                                                 |                               |                       |                      |                            | -31.36**             | 370.31                                                            | -27.77*                 | 403.49               |
|                                                                                                                                                             |                               |                       |                      |                            | (-2.47)              | (0.46)                                                            | (-1.95)                 | (0.48)               |
| Growth Rate x 10 <sup>-4</sup>                                                                                                                              |                               |                       |                      |                            | -0.51                | -71.9                                                             | -1.96                   | -86.36               |
|                                                                                                                                                             |                               |                       |                      |                            | (-0.16)              | (-0.64)                                                           | (-0.51)                 | (-0.59)              |
| Domestic Credit x 10-4                                                                                                                                      | P.                            |                       |                      |                            |                      |                                                                   | -0.6                    | -5.46                |
|                                                                                                                                                             |                               |                       |                      |                            |                      |                                                                   | (-1.25)                 | (-0.33)              |
| $\ln(Population) \ge 10^{-4}$                                                                                                                               |                               |                       |                      |                            |                      |                                                                   | -626.72**               | -2306.16             |
|                                                                                                                                                             |                               |                       |                      |                            |                      |                                                                   | (-2.15)                 | (-0.27)              |
| Number of banks /<br>observations                                                                                                                           | 29/1326                       | 29/1352               | 29/1037              | 29/1055                    | 29/1034              | 29/1041                                                           | 29/1034                 | 29/1041              |
| Adjusted R^2                                                                                                                                                | 0.35                          | 0.27                  | 0.37                 | 0.26                       | 0.38                 | 0.26                                                              | 0.38                    | 0.26                 |
| F-statistic                                                                                                                                                 | 9.86                          | 7.18                  | 8.60                 | 5.63                       | 8.95                 | 5.62                                                              | 8.79                    | 5.48                 |
| Prob(F-statistic)                                                                                                                                           | (0.00)                        | (0.00)                | (0.00)               | (0.00)                     | (0.00)               | (0.00)                                                            | (0.00)                  | (0.00)               |
| Note: T-statistics in parenthesis. *** indicates significance at the 1% level, ** indicates significance at the 5% level, * fixed and time fixed variables. | enthesis. *** indi<br>nables. | cates significance at | the 1% level, ** ind | licates significance a     | t the 5% level, * in | indicates significance at the 10% level. All models include state | at the 10% level. All 1 | models include state |
|                                                                                                                                                             |                               |                       |                      |                            |                      |                                                                   |                         |                      |

# Appendix

# (A.1.) *Correlation matrices*

| View Proc OI | ject Print Nam | e Freeze Sam | ole Sheet Stats | Spec      |           |           |           |           |           |
|--------------|----------------|--------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
|              |                |              |                 | Co        | rrelation |           |           |           |           |
|              | ROA            | DEP          | SYLD            | LSIZE     | FDI       | GRW       | CRD       | POP       | POP_2     |
| ROA          | 1.000000       | 0.159646     | -0.128119       | -0.295448 | -0.142092 | 0.271256  | -0.109646 | -0.206687 | -0.209747 |
| DEP          | 0.159646       | 1.000000     | -0.627277       | -0.034086 | 0.287589  | 0.153765  | -0.167377 | 0.126056  | 0.124428  |
| SYLD         | -0.128119      | -0.627277    | 1.000000        | 0.166162  | 0.052784  | -0.139886 | -0.001279 | 0.292909  | 0.296709  |
| LSIZE        | -0.295448      | -0.034086    | 0.166162        | 1.000000  | 0.440689  | -0.094760 | -0.329917 | 0.482332  | 0.481766  |
| FDI          | -0.142092      | 0.287589     | 0.052784        | 0.440689  | 1.000000  | 0.008795  | -0.357866 | 0.869707  | 0.870185  |
| GRW          | 0.271256       | 0.153765     | -0.139886       | -0.094760 | 0.008795  | 1.000000  | -0.247824 | -0.141845 | -0.145530 |
| CRD          | -0.109646      | -0.167377    | -0.001279       | -0.329917 | -0.357866 | -0.247824 | 1.000000  | -0.416389 | -0.407122 |
| POP          | -0.206687      | 0.126056     | 0.292909        | 0.482332  | 0.869707  | -0.141845 | -0.416389 | 1.000000  | 0.999905  |
| POP_2        | -0.209747      | 0.124428     | 0.296709        | 0.481766  | 0.870185  | -0.145530 | -0.407122 | 0.999905  | 1.000000  |

| View Proc Ob | ject Print Nam | e Freeze Sam | ple Sheet Stats | Spec      |           |           |           |           |           |
|--------------|----------------|--------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
|              |                |              |                 |           |           |           |           |           |           |
|              | ROE            | DEP          | SYLD            | LSIZE     | FDI       | GRW       | CRD       | POP       | POP_2     |
| ROE          | 1.000000       | 0.123975     | -0.087118       | -0.108867 | -0.085222 | 0.228690  | -0.134291 | -0.141394 | -0.144589 |
| DEP          | 0.123975       | 1.000000     | -0.628254       | -0.026716 | 0.294852  | 0.155375  | -0.168842 | 0.132562  | 0.130973  |
| SYLD         | -0.087118      | -0.628254    | 1.000000        | 0.159946  | 0.043839  | -0.139987 | -0.001683 | 0.285281  | 0.289050  |
| LSIZE        | -0.108867      | -0.026716    | 0.159946        | 1.000000  | 0.444762  | -0.092182 | -0.333983 | 0.487273  | 0.486699  |
| FDI          | -0.085222      | 0.294852     | 0.043839        | 0.444762  | 1.000000  | 0.013078  | -0.362782 | 0.868578  | 0.869065  |
| GRW          | 0.228690       | 0.155375     | -0.139987       | -0.092182 | 0.013078  | 1.000000  | -0.247598 | -0.138172 | -0.141880 |
| CRD          | -0.134291      | -0.168842    | -0.001683       | -0.333983 | -0.362782 | -0.247598 | 1.000000  | -0.422904 | -0.413646 |
| POP          | -0.141394      | 0.132562     | 0.285281        | 0.487273  | 0.868578  | -0.138172 | -0.422904 | 1.000000  | 0.999905  |
| POP_2        | -0.144589      | 0.130973     | 0.289050        | 0.486699  | 0.869065  | -0.141880 | -0.413646 | 0.999905  | 1.000000  |
|              |                |              |                 |           |           |           |           |           |           |

(A.2.) Model IV Six predictor variables run against return on assets

Dependent Variable: ROA Method: Panel Least Squares Date: 01/03/17 Time: 20:29 Sample (adjusted): 2004Q1 2015Q4 Periods included: 48 Cross-sections included: 29 Total panel (unbalanced) observations: 1034 White period standard errors & covariance (d.f. corrected) WARNING: estimated coefficient covariance matrix is of reduced rank

| Variable | Coefficient | Std. Error | t-Statistic | Prob.  |
|----------|-------------|------------|-------------|--------|
| C        | 1.147374    | 0.519850   | 2.207125    | 0.0275 |
| DEP      | 0.001699    | 0.000637   | 2.667127    | 0.0078 |
| SYLD     | -0.001281   | 0.000422   | -3.036030   | 0.0025 |
| LSIZE    | -0.002777   | 0.001426   | -1.947865   | 0.0517 |
| GRW      | -0.000196   | 0.000378   | -0.519070   | 0.6038 |
| CRD      | -5.97E-05   | 4.77E-05   | -1.251708   | 0.2110 |
| LPOP     | -0.062672   | 0.029180   | -2.147791   | 0.0320 |

Effects Specification

```
Cross-section fixed (dummy variables)
Period fixed (dummy variables)
```

| R-squared          | 0.427835 | Mean dependent var    | 0.004400  |
|--------------------|----------|-----------------------|-----------|
| Adjusted R-squared | 0.379153 | S.D. dependent var    | 0.006497  |
| S.E. of regression | 0.005119 | Akaike info criterion | -7.635559 |
| Sum squared resid  | 0.024951 | Schwarz criterion     | -7.243704 |
| Log likelihood     | 4029.584 | Hannan-Quinn criter.  | -7.486868 |
| F-statistic        | 8.788335 | Durbin-Watson stat    | 1.546094  |
| Prob(F-statistic)  | 0.000000 |                       |           |
|                    |          |                       |           |

(A.3) Model IV Six predictor variables run against return on equity

Dependent Variable: ROE Method: Panel Least Squares Date: 01/04/17 Time: 16:03 Sample (adjusted): 2004Q1 2015Q4 Periods included: 48 Cross-sections included: 29 Total panel (unbalanced) observations: 1041 White period standard errors & covariance (d.f. corrected) WARNING: estimated coefficient covariance matrix is of reduced rank

| Variable | Coefficient | Std. Error | t-Statistic | Prob.  |
|----------|-------------|------------|-------------|--------|
| С        | 3.719231    | 15.83350   | 0.234896    | 0.8143 |
| DEP      | 0.030187    | 0.015524   | 1.944469    | 0.0521 |
| SYLD     | -0.032500   | 0.011360   | -2.860828   | 0.0043 |
| LSIZE    | 0.040349    | 0.084737   | 0.476164    | 0.6341 |
| GRW      | -0.008636   | 0.014637   | -0.590027   | 0.5553 |

| CRD<br>LPOP                                                                                                                      | -0.000546<br>-0.230616                                                           | 0.001664<br>0.867963                                                                                    | -0.327881<br>-0.265698          | 0.7431<br>0.7905                                                        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|--|--|
| Effects Specification                                                                                                            |                                                                                  |                                                                                                         |                                 |                                                                         |  |  |
| Cross-section fixed (dummy variables)<br>Period fixed (dummy variables)                                                          |                                                                                  |                                                                                                         |                                 |                                                                         |  |  |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.316364<br>0.258622<br>0.156871<br>23.59957<br>493.8667<br>5.478937<br>0.000000 | Mean depende<br>S.D. dependen<br>Akaike info crite<br>Schwarz criterie<br>Hannan-Quinn<br>Durbin-Watson | t var<br>erion<br>on<br>criter. | 0.079283<br>0.182189<br>-0.791291<br>-0.401540<br>-0.643447<br>1.155811 |  |  |

(A.4) Model I Hypothesized predictor variable run against return on assets

Dependent Variable: ROA Method: Panel Least Squares Date: 01/07/17 Time: 08:06 Sample: 2004Q1 2016Q3 Periods included: 51 Cross-sections included: 29 Total panel (unbalanced) observations: 1326 White period standard errors & covariance (d.f. corrected) WARNING: estimated coefficient covariance matrix is of reduced rank

| Variable              | Coefficient          | Std. Error           | t-Statistic          | Prob.            |
|-----------------------|----------------------|----------------------|----------------------|------------------|
| C<br>DEP              | 0.003523<br>0.001001 | 0.000484<br>0.000568 | 7.282060<br>1.760572 | 0.0000<br>0.0786 |
| Effects Specification |                      |                      |                      |                  |

Cross-section fixed (dummy variables) Period fixed (dummy variables)

| R-squared          | 0.384656 | Mean dependent var    | 0.004374  |
|--------------------|----------|-----------------------|-----------|
| Adjusted R-squared | 0.345641 | S.D. dependent var    | 0.006251  |
| S.E. of regression | 0.005056 | Akaike info criterion | -7.677897 |
| Sum squared resid  | 0.031856 | Schwarz criterion     | -7.364779 |
| Log likelihood     | 5170.446 | Hannan-Quinn criter.  | -7.560530 |
| F-statistic        | 9.859289 | Durbin-Watson stat    | 1.515365  |
| Prob(F-statistic)  | 0.000000 |                       |           |

(A.5) Model I Hypothesized predictor variable run against return on equity

Dependent Variable: ROE Method: Panel Least Squares Date: 01/07/17 Time: 08:07 Sample: 2004Q1 2016Q3 Periods included: 51 Cross-sections included: 29 Total panel (unbalanced) observations: 1352 White period standard errors & covariance (d.f. corrected)

| Variable                                                                                                                         | Coefficient                                                                      | Std. Error                                                                                                | t-Statistic                   | Prob.                                                                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------|--|--|--|
| C<br>DEP                                                                                                                         | 0.051982<br>0.030112                                                             | 0.011417<br>0.013373                                                                                      | 4.553119<br>2.251747          | 0.0000<br>0.0245                                                        |  |  |  |
| Effects Specification                                                                                                            |                                                                                  |                                                                                                           |                               |                                                                         |  |  |  |
| Cross-section fixed (dum<br>Period fixed (dummy varia                                                                            | • ·                                                                              |                                                                                                           |                               |                                                                         |  |  |  |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.308403<br>0.265450<br>0.142562<br>25.85211<br>756.4921<br>7.180006<br>0.000000 | Mean depender<br>S.D. dependent<br>Akaike info crite<br>Schwarz criteric<br>Hannan-Quinn<br>Durbin-Watson | var<br>erion<br>on<br>criter. | 0.077690<br>0.166339<br>-1.000728<br>-0.692483<br>-0.885299<br>1.157652 |  |  |  |

WARNING: estimated coefficient covariance matrix is of reduced rank

(A.6) Model II Two predictor variables run against return on assets

Dependent Variable: ROA Method: Panel Least Squares Date: 01/07/17 Time: 08:17 Sample: 2004Q1 2016Q3 Periods included: 51 Cross-sections included: 29 Total panel (unbalanced) observations: 1037 White period standard errors & covariance (d.f. corrected) WARNING: estimated coefficient covariance matrix is of reduced rank

| Variable | Coefficient | Std. Error | t-Statistic | Prob.  |
|----------|-------------|------------|-------------|--------|
| C        | 0.003552    | 0.001048   | 3.389649    | 0.0007 |
| DEP      | 0.001634    | 0.000601   | 2.721407    | 0.0066 |
| SYLD     | -0.000798   | 0.000474   | -1.683887   | 0.0925 |

**Effects Specification** 

Cross-section fixed (dummy variables) Period fixed (dummy variables)

| R-squared          | 0.418437 | Mean dependent var    | 0.004406  |
|--------------------|----------|-----------------------|-----------|
| Adjusted R-squared | 0.369771 | S.D. dependent var    | 0.006489  |
| S.E. of regression | 0.005152 | Akaike info criterion | -7.624100 |
| Sum squared resid  | 0.025372 | Schwarz criterion     | -7.237918 |
| Log likelihood     | 4034.096 | Hannan-Quinn criter.  | -7.477583 |
| F-statistic        | 8.598092 | Durbin-Watson stat    | 1.517073  |
| Prob(F-statistic)  | 0.000000 |                       |           |
|                    |          |                       |           |

(A.7) Model II Two predictor variables run against return on equity

Dependent Variable: ROE Method: Panel Least Squares

#### Date: 01/07/17 Time: 08:17 Sample: 2004Q1 2016Q3 Periods included: 51 Cross-sections included: 29 Total panel (unbalanced) observations: 1055 White period standard errors & covariance (d.f. corrected) WARNING: estimated coefficient covariance matrix is of reduced rank

| Variable | Coefficient | Std. Error | t-Statistic | Prob.  |
|----------|-------------|------------|-------------|--------|
| C        | 0.088797    | 0.029089   | 3.052620    | 0.0023 |
| DEP      | 0.030171    | 0.012744   | 2.367369    | 0.0181 |
| SYLD     | -0.032987   | 0.015670   | -2.105071   | 0.0355 |

#### Effects Specification

Cross-section fixed (dummy variables) Period fixed (dummy variables)

| R-squared          | 0.316015 | Mean dependent var    | 0.080075  |
|--------------------|----------|-----------------------|-----------|
| Adjusted R-squared | 0.259836 | S.D. dependent var    | 0.181300  |
| S.E. of regression | 0.155977 | Akaike info criterion | -0.804545 |
| Sum squared resid  | 23.69630 | Schwarz criterion     | -0.423631 |
| Log likelihood     | 505.3977 | Hannan-Quinn criter.  | -0.660148 |
| F-statistic        | 5.625106 | Durbin-Watson stat    | 1.148652  |
| Prob(F-statistic)  | 0.000000 |                       |           |
|                    |          |                       |           |

(A.8) Model III Four predictor variables run against return on assets

Dependent Variable: ROA Method: Panel Least Squares Date: 01/07/17 Time: 08:57 Sample (adjusted): 2004Q1 2015Q4 Periods included: 48 Cross-sections included: 29 Total panel (unbalanced) observations: 1034 White period standard errors & covariance (d.f. corrected) WARNING: estimated coefficient covariance matrix is of reduced rank

| Variable | Coefficient | Std. Error | t-Statistic | Prob.  |
|----------|-------------|------------|-------------|--------|
| С        | 0.043607    | 0.016038   | 2.719021    | 0.0067 |
| DEP      | 0.001538    | 0.000635   | 2.421278    | 0.0157 |
| SYLD     | -0.000967   | 0.000421   | -2.297708   | 0.0218 |
| LSIZE    | -0.003136   | 0.001271   | -2.466949   | 0.0138 |
| GRW      | -5.06E-05   | 0.000311   | -0.162566   | 0.8709 |

#### **Effects Specification**

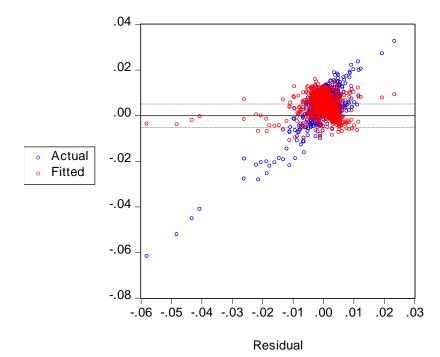
#### Cross-section fixed (dummy variables) Period fixed (dummy variables)

| R-squared          | 0.425786 | Mean dependent var    | 0.004400  |
|--------------------|----------|-----------------------|-----------|
| Adjusted R-squared | 0.378235 | S.D. dependent var    | 0.006497  |
| S.E. of regression | 0.005123 | Akaike info criterion | -7.635852 |
| Sum squared resid  | 0.025040 | Schwarz criterion     | -7.253555 |

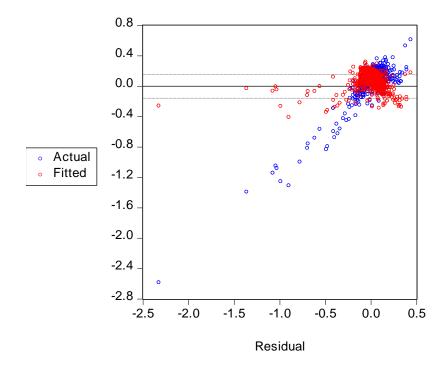
| Log likelihood    | 4027.735 | Hannan-Quinn criter. | -7.490788 |
|-------------------|----------|----------------------|-----------|
| F-statistic       | 8.954432 | Durbin-Watson stat   | 1.543903  |
| Prob(F-statistic) | 0.000000 |                      |           |

(A.9) Model III Four predictor variables run against return on equity

Dependent Variable: ROE Method: Panel Least Squares Date: 01/07/17 Time: 08:58 Sample (adjusted): 2004Q1 2015Q4 Periods included: 48 Cross-sections included: 29 Total panel (unbalanced) observations: 1041 White period standard errors & covariance (d.f. corrected) WARNING: estimated coefficient covariance matrix is of reduced rank


| Variable | Coefficient | Std. Error | t-Statistic | Prob.  |
|----------|-------------|------------|-------------|--------|
| C        | -0.371949   | 0.996710   | -0.373177   | 0.7091 |
| DEP      | 0.029915    | 0.013654   | 2.190913    | 0.0287 |
| SYLD     | -0.032200   | 0.013243   | -2.431561   | 0.0152 |
| LSIZE    | 0.037031    | 0.080818   | 0.458204    | 0.6469 |
| GRW      | -0.007190   | 0.011248   | -0.639211   | 0.5228 |

Effects Specification


Cross-section fixed (dummy variables) Period fixed (dummy variables)

| R-squared          | 0.316158 | Mean dependent var    | 0.079283  |
|--------------------|----------|-----------------------|-----------|
| Adjusted R-squared | 0.259942 | S.D. dependent var    | 0.182189  |
| S.E. of regression | 0.156731 | Akaike info criterion | -0.794831 |
| Sum squared resid  | 23.60670 | Schwarz criterion     | -0.414586 |
| Log likelihood     | 493.7096 | Hannan-Quinn criter.  | -0.650594 |
| F-statistic        | 5.623989 | Durbin-Watson stat    | 1.155256  |
| Prob(F-statistic)  | 0.000000 |                       |           |

(A.10) ROA model residuals plot against Y hat:



(A.11) ROE model residuals plot against Y hat:

